

Detection of MEA's flaws in PEMFC: "in-situ" Relaxometry combined with "ex-situ" Infrared Imagery

G. De Moor¹, C. Bas¹, N. Charvin¹, N. Caque², E. Rossinot², N.D. Albérola¹, L.Flandin¹

¹ LEPMI, UMR 5279, CNRS - Grenoble INP- Université de Savoie - Université J. Fourier LMOPS - Bât. IUT - Campus de Savoie Technolac, F - 73376 Le Bourget du Lac Cédex ² Axane, 2 rue de clémencière, 38360 Sassenage, France.

Innover pour ine énergie ··· durable

Axane Fuel Cell systems

Horizon Hydrogène Energie

☐ A commercial scale activity

- Commercial scaled global offer: (FC systems, H₂ logistic, services and measurement)
- From 0.1 to 2.5 kW
- Off-Grid, Bad-Grid (telecom antenna), events (sports, meetings)
- > 50 systems deployed since 2011 mainly in France
 - **→** Europe and India in progress
- System's availability (2012) > 99.4%
- 11000h reached (and still working) with the first systems deployed

Axane ⇔ Laboratories

To Study MEAs degradation mechanisms and to develop mitigation strategies adapted to Axane system

- > Analyse of system working data
- > Development *in-situ/ex-situ* diagnostic and characterization tools
- > Optimisation of MEA components and working conditions

ver pour rergie

2

in situ Stack diagnosis after/during operation

Main obectives:

- Identify the cells with defects such as pinhole or short-cuts
- Localize precisely the flaw intra-MEA
- Physico-Chemical characterization around the defect area

√ 3 Macroscopic Techniques

Sensitive to pinhole / H₂ leak

- Leak test by pressure drop (in situ)
- Infrared Imagery (ex situ)

<u>Sensitive to pinhole, membrane</u> <u>thinning, etc... / electrical short-cuts</u>

• Relaxometry (in situ)

in situ Stack diagnosis during/after operation

Electrical relaxometry¹ (method)

Passive state: No electrochemical reaction

- ✓ Integrated in Fuel Cell (current source and voltage measurement)
- √ Fast and synchronous measurement of all the cells
- ✓ Electrical short-cut growth detection

- Phase 1: a forced charging a current (few mA) is applied during few seconds
- Phase 2: a self discharge the MEA is held at open circuit and freely discharges
- Phase 3: a forced discharge to return MEA at an equilibrium state

une énergie durable

¹ L. Flandin, A. S. Danérol, C. Bas, E. Claude, G. De Moor, N. Albérola, J. Electrochem. Soc. 2009, 156, B1117.

in situ Stack diagnosis during/after operation

Electrical relaxometry (Phase 2)

Kohlrausch (KWW) function simulated by a Monte Carlo numerical simulation

Equivalent circuit to fit the Phase 2

$$V(t) = V_{source} \left[1 - exp^{\left(\left(-\frac{t}{\tau_c} \right)^{\beta} \right)} \right]$$

Rg, Rb related to electrical short-circuit

Estimation of R_{short-circuit} with data from phase 2

in situ Stack diagnosis during/after operation

Electrical relaxometry (sensitive to shortcuts)

Phase 2: the most discriminant step

- The self discharge of the D_{LC} is governed by the electrical short-circuit resistance
- Equilibrium recovery for an unaged MEA is approximatively10 hours
- A rapid drop of the voltage indicates a localized contact between the active layers

Classification

Good: No electrical short-circuit

Intermediate: beginnings for short-circuit

Defective: Evident short circuit within the cell

<u>Drawbacks:</u> Fuel Cell turned off, false negative

Advantages: Fast, easily integrated in FC system, sensitive

ex situ Stack diagnosis before/after operation

Infrared Imagery²

All the MEA are analysed after ageing

Classification

Flaws classified as a function of the generated heat

$$\Delta T$$
 (°C) = T_{max} - T_{min}

²U.S. Patent No. 5,763,765 (issued Jun.9, 1998).

Gaz

Nitrogen

and Hydrogen

(Mol-5%)

Stack characterization (old generation)

Horizon Hydrogène Energie

- Study of a particular case (back from customer)
 - Materials
 - Commercial CCB MEA with surface area close to 90 cm²
 - Membrane type: Nafion NR211 (25 μm) with IEC of 0.91 meq.g⁻¹
 - Catalyst layers: Pt/C type at both anode and cathode side
 - Load profile of the system studied and its specificity

End of life

Shut down of the Fuel Cell due to unsafety level of H₂ leak

Macroscopic Characterizations

Horizon Hydrogène Energie

Defective cells position

Leak test:

- Degradation at the bottom part of the stack
- Degraded cells at the same position than those observed in infrared imagery

Relaxometry:

 Shortcuts : randomly spread along the stack

Infrared Imagery:

- Cells identified with flaws are the sum of those identifed by relaxometry and leak test
- Intermediate cells → relaxometry
- Defective cells → leak test

Flaw localisation

Conclusions

- ✓ Macroscopic tools used for FMEA (Failure Mode and Effect Analysis)
 - Identification of defective Cells and MEA defective areas
 - Statistical analysis of the degradation occurrence as a function of MEA type, membrane type, current load profile, system configuration
- ✓ In the present study
 - Heterogeneous ageing
 - Large pinholing of the membrane in air outlet region due to the failure of one humidifier that induced operation under large air sub-stoichiometry and with large flooding
 - Two different types of defect

Case 1: large pinholing and tearing that appear during ageing due to operating conditions

→ End of Life of FC

Case 2: small pinhole/microstructure imperfections that appear during ageing or initially present before ageing

→ Not dramatic at short-term but at long time?

- ✓ Current focusings
 - Deeper physico-chemical characterization around the defects
 - Accelerated Degradation Technique (ADT) to evaluate the impact of local short-circuit defects on membrane durability

Thank You For Your Attention.