

Dr Shangfeng Du

Centre for Hydrogen and Fuel Cell Research, University of Birmingham CARISMA 2012, Copenhagen Denmark, 3rd -5th Sep 2012

Outlines

- Hydrogen and fuel cell research in Birmingham
- Pt-nanowire thin film catalyst electrodes
- Active screen plasma treatment to GDL support
- Summary and future work

UNIVERSITY BIRMINGHAM		-	niversity of Birmingham ogen and Fuel Cell Research		
Chemical Engineering	Metallurgy &	Chemistry	Electrical,	Economics	
Prof. R. Steinberger-Wilckens	Materials	Dr. P. Anderson	Electronic &	Prof. R.J. Green	
SOFC Stacks & Materials	Dr. D. Book	New Materials for	Computer	Energy Policy,	
Prof. K. Kendall	Solid-state Hydrogen	Hydrogen Storage and	Engineering	Techno-economics	
SOFC & Nanotechnology	Storage, Hydrogen Separation Membranes,	Delivery	Dr. S. Hillmansen	Geography, Earth	
Dr. Neil Rees	Hydrogen Processing of	Dr. P. Slater	Hydrogen Railway	& Environmental	
Electrochemistry	Materials	Materials for SOFC	Research	Sciences	
Dr. W. Bujalski	Dr. A. Walton	Prof. J.A. Preece	Mechanical	Dr. D. van der	
Fuel Cell Applications & Modeling	Solid-state Hydrogen, Storage Materials &	Nano materials for Fuel Cells	Engineering	Horst	
Dr A. Dhir	Hydrogen Processing of Materials	Prof. R. Johnston	Prof. K. Jiang	Non-technical Barriers to Energy Transition	
Hydrogen Generation/ Electrolysis / Applications	Prof. R. Harris	Fuel Cell Catalysts Modeling	Nanotomography for Porous Fuel Cell	Physics	
Dr S. Sharma	Hydrogen Fuel Cell	Prof. C. Greaves	Materials	-	
Graphene oxides & Catalyst supports	System Integration & Solid-state Hydrogen	Cathode Materials for	Prof. ML. Wyszynski	Prof. R. E. Palmer	
Dr S. Du	Storage	SOFC	Prof. H. Xu	Hydrogen Production ∨ia Photocatalysis	
Nanoparticles for Fuel cells	Dr. J.D. Speight		Dr Thanos Tsolikas		
Dr P. Mendes	Hydrogen Separation	Biosciences	Hydrogen Engines	Mathematics	
Nanosurface engineering &	Membranes	Prof. L. Macaskie &		Prof. S. Decent	
electrocatalysis Dr. J. Wood	Dr. A.J. Davenport	Dr. M. Redwood	Social Policy	Prof, D Needham	
Catalysis & Reforming	Corrosion of Metallic Bipolar Plates	Bio-Hydrogen Production	Drs. S. Connor & D.	Dr Jamal Uddin	
Drs. G. Leeke	Dipolar rated	Platinum reco∨ery	Toke	Dr D. Leppinen	
Hydrogen production & Biorefining of Biomass using Supercritical Water	Research Councils UK	-	Communication and Legitimacy of Policy	Modelling of SOFC & PEMFC	
Dr Bushra Al-Duri	Energy 🧼				
Hydrogen Supercritical Water Gasification	For a Low Carbon Future Birmingham Science City ideas for life www.hydrogen.bham.ac.uk www.fuelcells.bham.ac.uk				


For a Low Carbon Future

ideasforlife

EPSRC Doctoral Training Centre

Hydrogen, Fuel Cells and their applications

Hydrogen and Fuel Cell Technologies will have an enormous impact across all Energy markets. The UK will be the catalyst for this revolution in sustainable technologies by providing first-class skilled researchers.

Professor Keenin Kendall FRS Director of the EPSRC Doctoral Training Centre

UNIVERSITY BIRMINGHAM

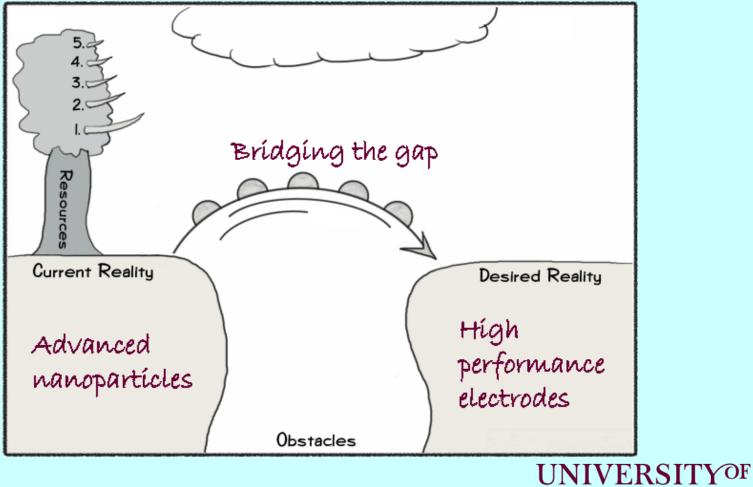
£5.5M–UoB/LU/UoN

- 9 year programme
- 50 PhD students to be recruited
- ➤ 4 year PhD
- 120 credits (modules) + dissertation
- PhD projects covering Hydrogen generation, Hydrogen storage, Fuel Cell, Materials and system integration

For further details, please contact hfc@contacts.bham.ac.uk

UNIVERSITY OF BIRMINGHAM

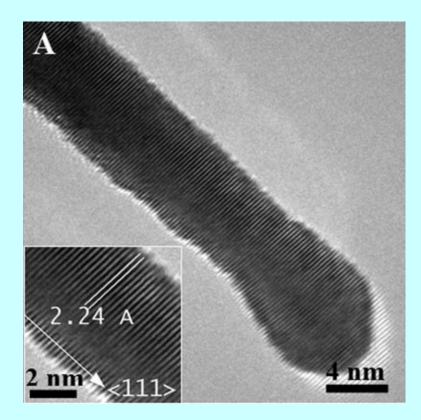
Polymer electrolyte fuel cells (PEFCs)


Hydrogen House: BAXI-CHP

Hybrid hydrogen-powered fuel cell cars: MicroCab

A clean power generator with high energy efficiency; Barriers: High cost; poor durability and reliability

Challenges to PEFCs

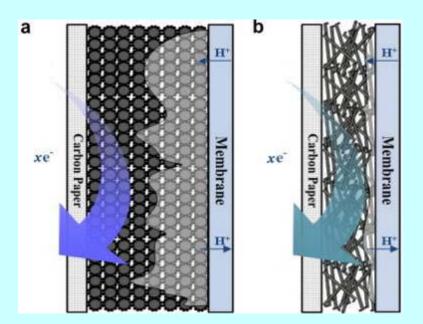


BIRMINGHAM

Pt nanowires

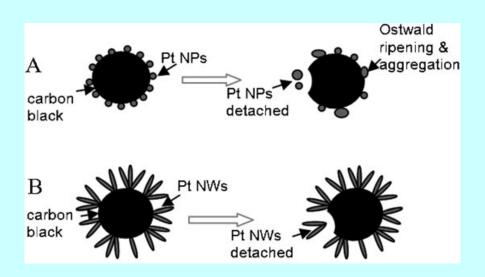
One-dimensional (1-D) nanostructures:

- □ Anisotropy
- Unique structure
- Surface properties



SH Sun et al. Angew Chem Int Ed 2010

Pt-NW electrodes


Electrode structure:

Facile pathways for charge transfer Reducing embedded sites Facilitating effective mass transfer

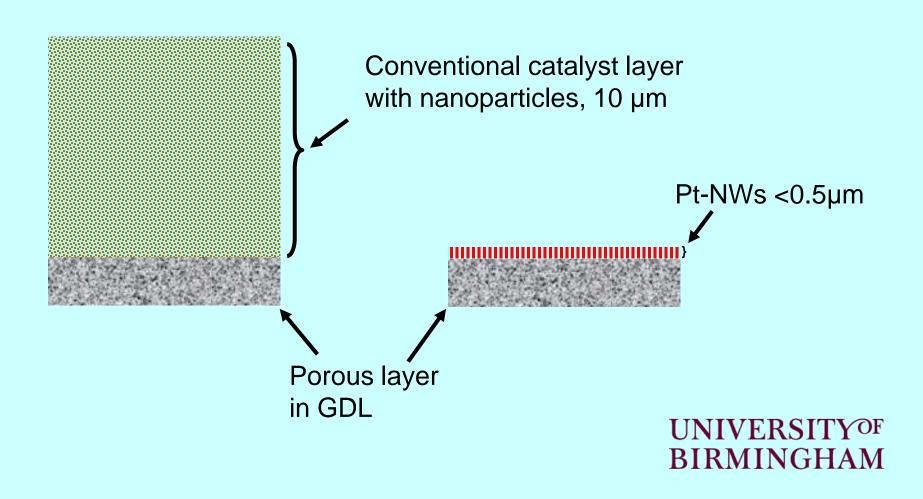
Stability :

Mitigates Ostwald ripening and aggregation

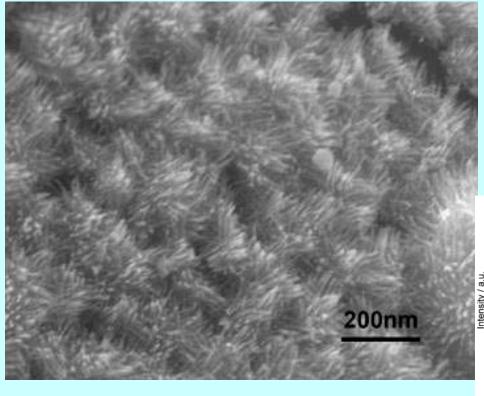
YS Kim et al. *Electrochem Commun* 2008 S Du. *Int J Low Carbon Tech* 2012

Disadvantages of Pt-NW electrodes

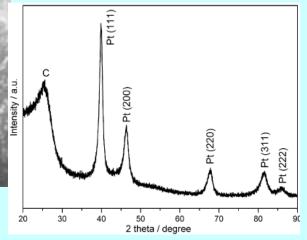
>Unusual shapes and bulky specific volumes:


Difficult to fabricate into fuel cell electrodes

Common obstacles:


- Loose structures in coated layers
- Thick catalyst layers
- **×** High electrode resistance
- Poor cell performance

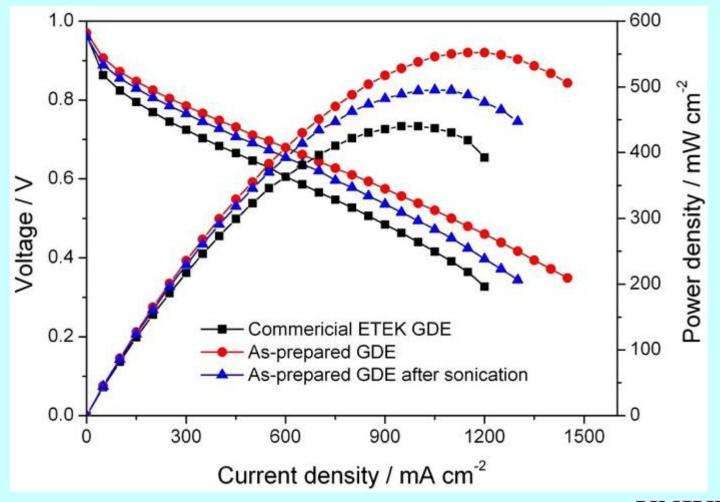
Pt-nanowire (Pt-NW) thin film catalyst electrode


Pt-nanowire thin film catalyst electrode

Thickness < 0.5µm

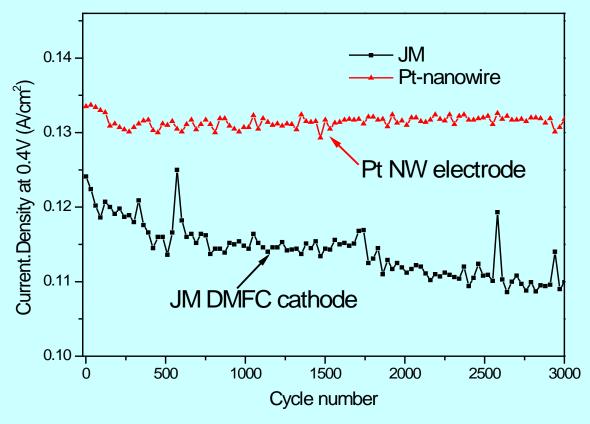
Simple single-step method:

- Aqueous solution
- Room temperature
- No free nanoparticles



UNIVERSITY OF

BIRMINGHAM

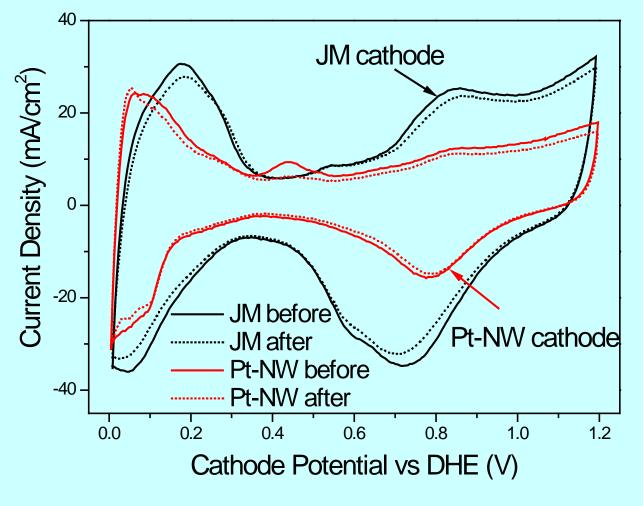

S Du, et al. J Power Sources 2010; Int J Hydrogen Energy 2011

Power performance as cathode in PEMFC

FCT50-S: 25 cm² PEMFC, 65°C, H₂/Air 1.5 bar, 100% RH

Pt-NW thin film catalyst cathode in DMFC

75 °C, 3000 loading cycles: 0.2–0.7V, 50 mV s⁻¹, Anode: 1.0 mL min⁻¹ 1N CH₃OH; Cathode: 100 sccm air

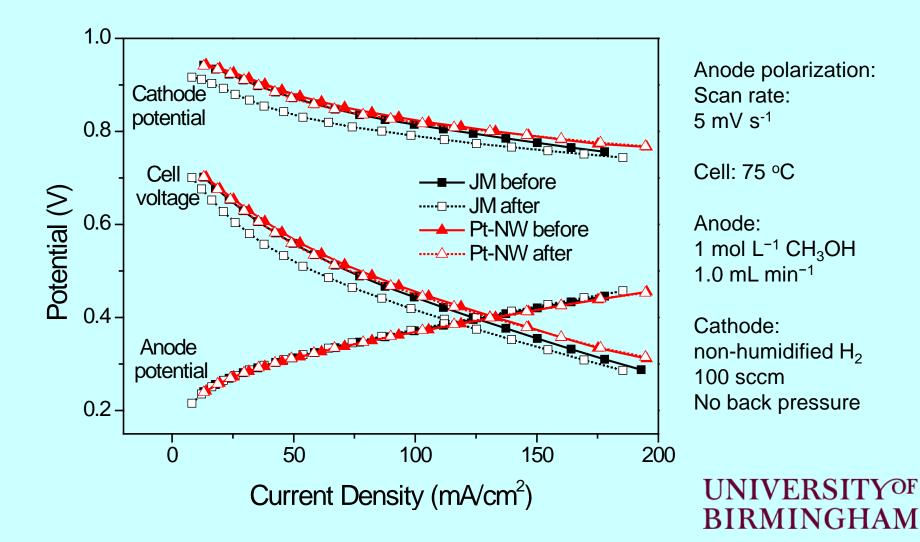

NIVERS

IRMINGHAM

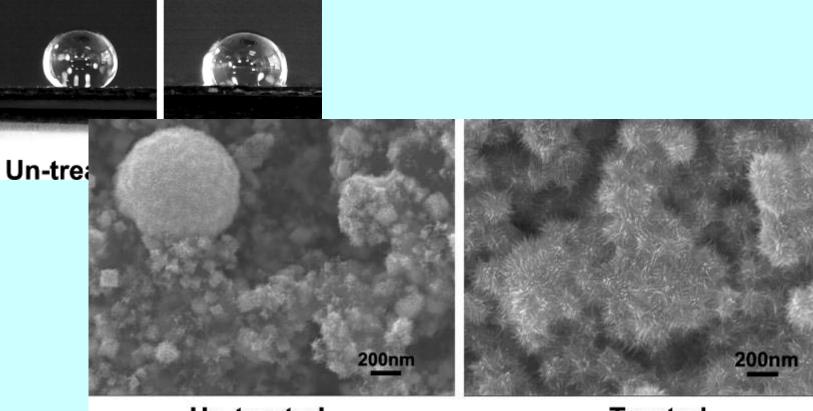
YOF

S. Du, et al. EFCF 2011 A0707

Cathode CV in DMFC


Scan rate: 20 mV s⁻¹

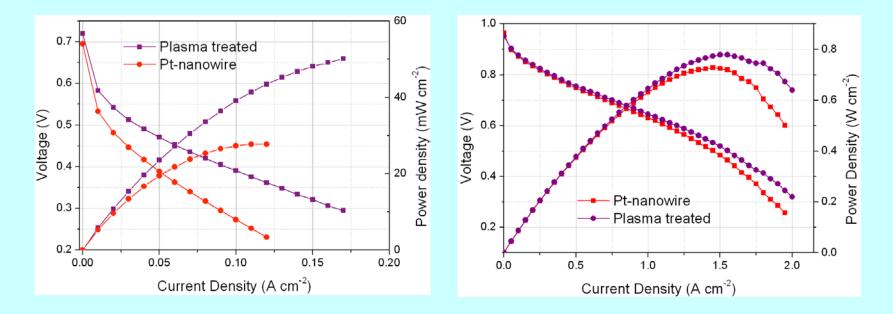
Cell temperature: 75 °C


Anode: non-humidified H₂ 100 sccm No back pressure

Cathode: ultra-pure water 1.0 mL min⁻¹

Durability test – Cathode polarization

Plasma treatment to GDL substrates



Un-treated

Treated

S Du, H Dong. GB1203409.6, 2012

Impact of pre-GDL treatment

DMFC

PEMFC

S Du, H Dong. GB1203409.6, 2012

Summary and future work

- A simple and effective method for preparing Ptnanowire thin film catalyst electrode
- High reliability, better catalytic activity and improved durability
- Pre-GDL treatment enhanced performance
- Controlling Pt-nanowire distribution
- Ultra-thin Pt-nanowires for better performance

Acknowledgements

Colleagues: Mr Kaijie Lin Dr Artur Majewski Prof Robert Steinberger-Wilckens Prof Kevin Kendall Prof Hanshan Dong NuVant Systems Inc:

Dr Bogdan Gurau

Mr Corey Grice

Thank you for your attention!