

ROYAL INSTITUTE OF TECHNOLOGY

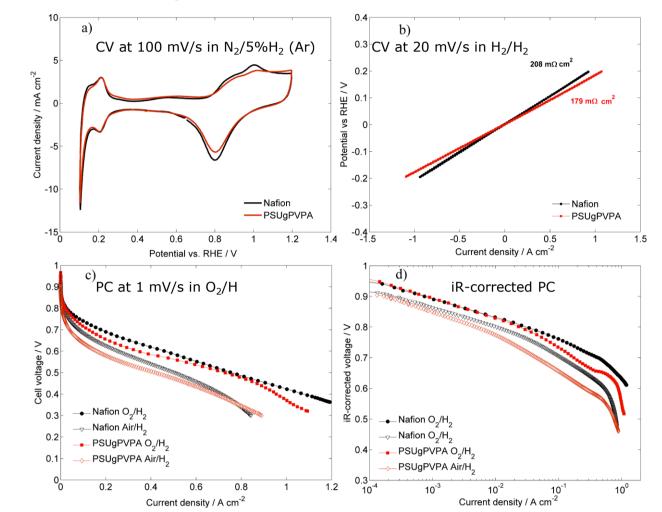
Performance of a phosphonated hydrocarbon ionomer in the fuel cell cathode catalyst layer

Rakel Wreland Lindström, Alejandro Oyarce, Luis Guerrero Aguinaga, Diego Ubeda, Göran Lindbergh

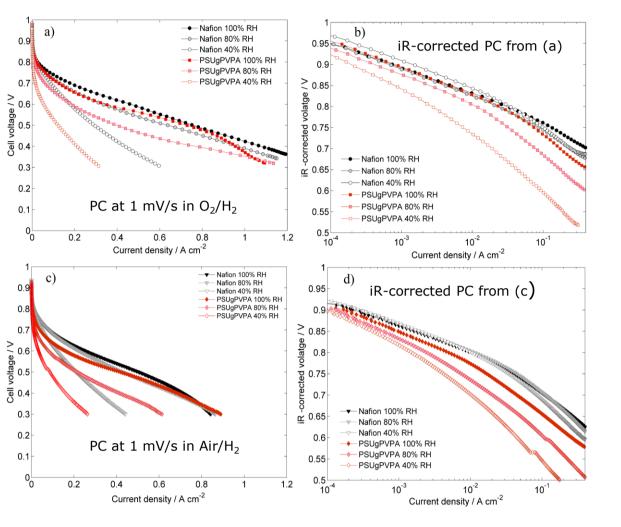
Applied Electrochemistry, School of Chemical Science and Engineering, KTH-Royal Institute of Technology, Stockholm

Mark Ingratta, **Patric Jannasch**

Polymer and Materials Chemistry,


Here we show that phosphonated hydrocarbon ionomer (PSUgPVPA) in the cathode catalyst layer has almost as good performance as Nafion at 80 °C and 100% RH.

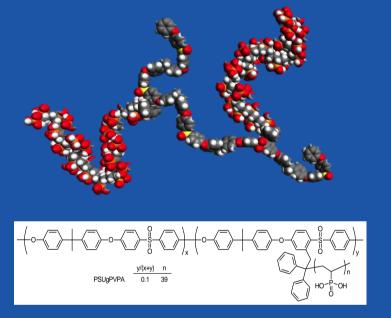
In accordance with sulfonated hydrocarbons the performance decreases at lower humidity. However, with a PSUgPVPA CL operation was possible at as low humidity as 20% RH.


The results show that the performance losses at lower humidity follows from a significant reduction of ECSA. This could be an effect of catalyst poisoning by the ionomer interfering with ORR but the concomitant decrease in Cdl, increasing impedance and frequency shift, revealed from EIS, indicate that the poorer performance at low humidity is mainly an effect of reduced catalyst wetting by the ionomer in combination with the decreased proton conduction in the ionomeric phase.

Influence of humidity on performance

Comparison with nafion at 100 % RH

Influence of humidity at 80 °C


Department of Chemistry, Lund University, Lund

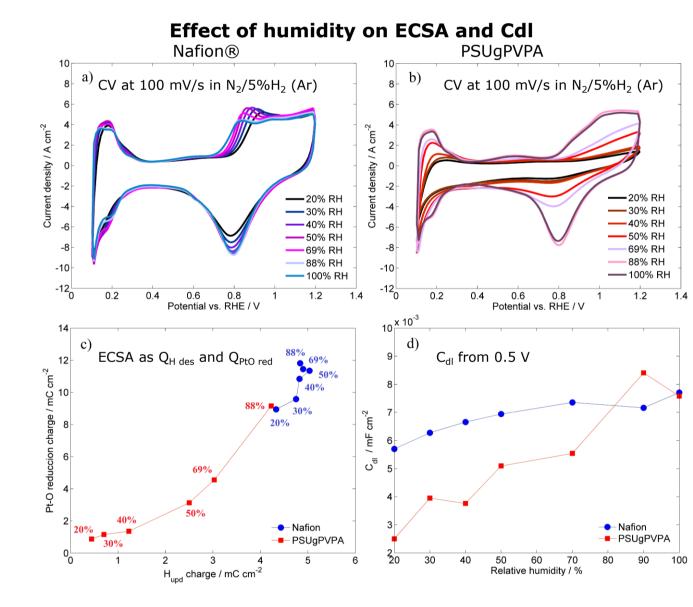
Aim

In this study an ionomer based on polysulfone grafted with poly(vinylphosphonic acid) (PSUgPVPA) was synthesized and used as binder in the cathode Pt/C catalyst layer (CL) for the first time. The MEA was electrochemically characterized and compared to a MEA with Nafion[®]-containing electrodes. The aim was to study to the overall performance during fuel cell operation and the interactions with the catalysts and especially the behavior related to the presence of water.

Background

Hydrocarbon (HC) polymers are interesting for HT applications due to their high thermal and chemical stability in comparison to Nafion® that degrades at temperatures above 80°C. Generally, HC polymers are functionalized with sulfonic acid groups which increase the proton conductivity but also cause high water up-take, swelling and mechanical instability (1).

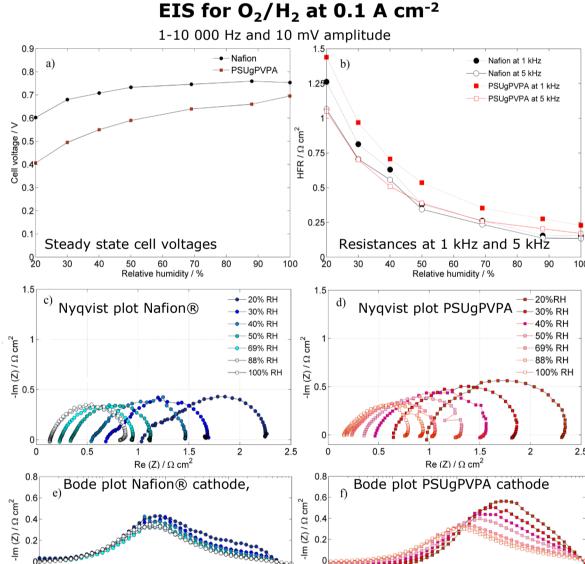
Membranes based on polysulfone grafted with poly(vinylphosphonic acid) side chains (PSUgPVPA) have phase-


Figure 1. Comparison between cathode catalyst layers (CLs) containing PSUgPVPA or Nafion® was possible as similar electrochemical surface area (ESCA), double layer capacity (C_{dl}) and cell resistance (R_{cell}) were obtained at 80°C and 100% RH.

At these conditions, the PSUgPVPA cathode shows almost as good performance as the Nafion® one.

Figure 2. In contrast to Nafion®, the performance of PSUgPVPA is significantly decreased at lower levels of humidity. Comparing the iR-corrected polarization curves, activation as well as ohmic losses increases for the PSUgPVPA CL.

In accordance with studies on other hydrocarbon ionomers such as sPEEK and sPAE some instabilities was observed at fully humidified conditions (1).


Reduced activity due to loss of ECSA and ionomer resistance

ECSA loss due to:

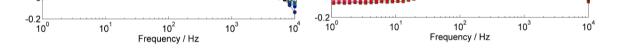
> Increased interaction between the sulfonated backbone (1), or in our case the phosphonated group, and the catalyst surface?

Loss of contact between ionomer and Pt catalyst, as indicated by the concomitant loss in the C_{dl} at drier conditions. This is presumably due to ionomer shrinking that reduces the threephase boundary in the CL and thus, the catalyst utilisation.

EIS evidences that:

- > The ORR kinetics is not much affected by using PSUgPVPA as the radius of the capacitive semi-circle is almost the same as for the Nafion® CL.
- In contrast to Nafion[®], the PSUgPVPA shows an increasing impedance and a shift in peak frequency at drier conditions that could be due to decreased capacitance and increased oxygen diffusion as the RH is decreased.
- Some differences are also found in the high frequency region, which are associated to proton resistance in the cathode and e.g. C_{dl}. The PSUgPVPAbased CL shows an extended 45 °

separated morphologies with very high local concentrations of phosphonic acid groups (2). This structure make possible that high intrinsic proton conductivities may be reached also under dry conditions. However, the lower acidity of phosphonic acids in relation to sulfonic acids means that higher ionic contents are necessary to attain high conductivities under hydrated conditions. PSUgPVPA is expected to maintain high proton conductivity under both wet and dry condition. It has a high thermal stability, restricted water uptake in comparison to sPSU (3), and good mechanical properties. In the present work, **PSUgPVPA** ionomers were synthesized and characterized as the ionomer in the cathode CL for the first time.


CONTACT INFORMATION

Rakel Wreland Lindström rakel2@kth.se

Applied Electrochemistry, **KTH-** Royal Institute of Technology, Teknikringen 42 10044 Stockholm, Sweden,

Figure 3. The ECSA of the PSUgPVPA CL is drastically reduced at drier conditions. This is also evident on Nafion® based electrodes but to less extent. For the Nafion® ionomer, the loss of ECSA has been explained by blocking by the hydrophobic domains (4).



Figure 4. The performance is reduced at drier conditions. In spite of the large losses in ECSA and Cdl, operation with the PSUgPVPA CL is possible at as low humidity as 20 % RH.

branch, indicating a higher ionomer resistance in that electrode for all RH for PSUgPVPA.

PSUgPVPA synthesis and properties MEA preparation and characterisation

Nation 115 | PSUgP\/PA

Pronerties

Conductivity immersed

3.5

1000/T / K⁻¹

Mafion

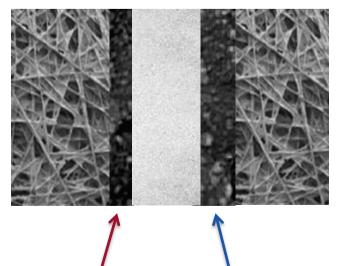
References:

PSUgPVPA

7	Fropercies		rogrvrA
-	Degree of substitution	-	10/100 units PSU
-	PVPA MW	-	4200 g/mol
-	PVPA content	-	49 wt%
;	Water up-take	21 wt%	70 wt%
	IEC	0.91 meg/g	4.3 meg/g
-	T _{5%}	336 °C	286 °C
4	Cond. 80 °C	140 mS/cm	40 mS/cm
	Cond. 20 °C	58 mS/cm	23 mS/cm

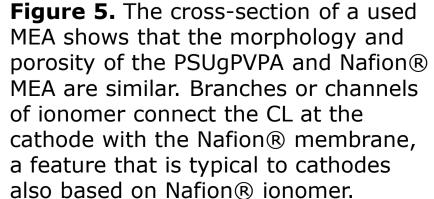
Cast PSUgPVPA membranes were dissolved in DMAc and mixed with water, isopropanol Pt/C to form an ink that was applied on the 115 Nafion membrane by the spraying-ink method to make the cathode. The anode and the Nafion® cathode for comparison were prepared similarly using Nafion based ink to make the membrane electrode assembly (MEA).

To activate and remove poisoning residuals from the solvent, the MEA was boiled in 0.5 M H_2SO_4 prior to be mounted in the cell. The ionomer to carbon ratio (I/C) was optimized to 0.6 for PSUgPVPA and 0.7 for the Nafion cathode.


Nafion[®]

Anode CL

PSUgPVPA


Cathode CL

Membrane Nafion®115

Cathode PSUgPVPA 0.1 mg Pt/cm² (38 % Pt/C) I/C=0.6)

> **Anode Nafion**® 0.25 mg Pt/cm² (38 % Pt/C) I/C=0.7)

1. J. Peron, Z. Q. Shi, S. Holdcroft, *Energy Environ. Sci.*, **4**, 1575 (2011). 3. S. von Kraemer, G. Lindbergh, B. Lafitte, M. Puchner, P. Jannasch, J. Electrochem. Soc., **155**, B1001 (2008). 2. J. Parvole, P. Jannasch, *Macromolecules*, **41**, 3893 (2008). 4. R. W. Lindström, K. Kortsdottir, M. Wesselmark, A. Oyarce, C. Lagergren, G. Lindbergh, J. Electrochem. Soc., **157**, B1795 (2010).