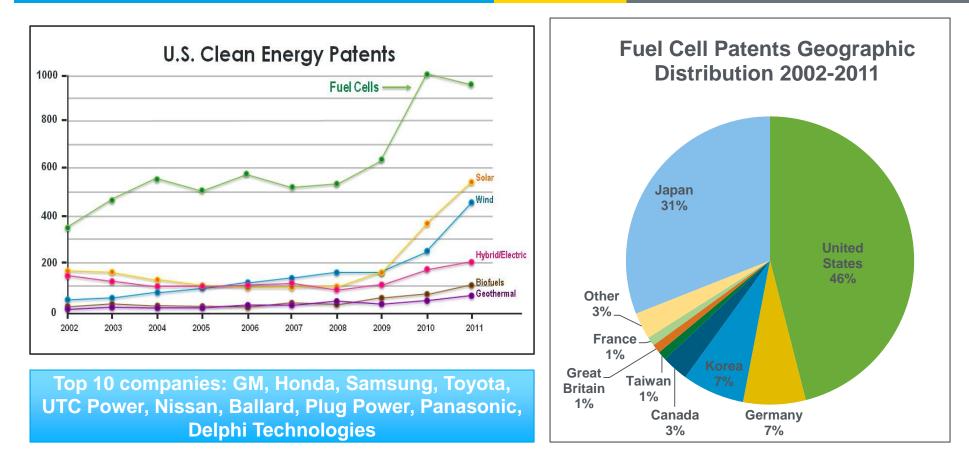
PEMFC MEA Component R&D at the DOE Fuel Cell Technologies Program

Energy Efficiency & Renewable Energy


CARISMA 2012 Copenhagen, Denmark September 3, 2012

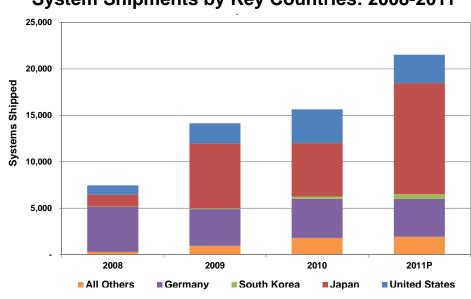
Dr. Dimitrios Papageorgopoulos

Fuel Cells Team Leader Fuel Cell Technologies Program U.S. Department of Energy

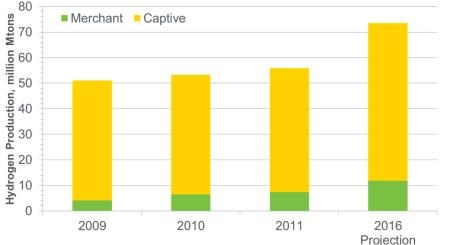
Overview Fuel Cells – An Emerging Industry

ENERGY Energy Efficiency & Renewable Energy

Clean Energy Patent Growth Index^[1] shows that fuel cell patents lead in the clean energy field with over 950 fuel cell patents issued in 2011.


• Nearly double the second place holder, solar, which has ~540 patents.

[1] http://cepgi.typepad.com/heslin_rothenberg_farley_/


Fuel Cell Market Overview

U.S. DEPARTMENT OF ENERGY Renew

Energy Efficiency & Renewable Energy

Global Hydrogen Production Market 2009 - 2016 (million metric tons)

System Shipments by Key Countries: 2008-2011

Fuel cell market continues to grow >20,000 units shipped in 2011 >35% increase over 2010

Various analyses project that the global fuel cell/hydrogen market could reach maturity over the next 10 to 20 years, producing revenues of:

- \$14 \$31 billion/year for stationary power
- \$11 billion/year for portable power
- \$18 \$97 billion/year for transportation

Widespread market penetration of fuel cells could lead to: 180,000 new jobs in the US by 2020 675,000 jobs by 2035

The global hydrogen market is also robust with over 55 Mtons produced in 2011 and over 70 Mtons projected in 2016, a > 30% increase.

FuelCells2000, Pike Research, Fuel Cell Today, ANL, See DOE FCT 2011 Market Report

Current Program Structure

ENERGY Energy Efficiency & Renewable Energy

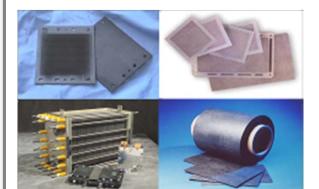
The Program is an integrated effort, structured to address all the key challenges and obstacles facing widespread commercialization.

Basic & Applied Research Technology Validation and Technology Development Systems Integration & Analysis **Market Transformation** Hydrogen Fuel R&D **Fuel Cell** Production R&D Delivery Storage Manufacturing R&D **Safety Codes & Standards** Education

WIDESPREAD COMMERCIALIZATION ACROSS ALL SECTORS

- Transportation
- Stationary Power
- Auxiliary Power
- Backup Power
- Portable Power

The Program includes activities within the Offices of Energy Efficiency & Renewable Energy, Fossil Energy, Nuclear Energy, and Science.

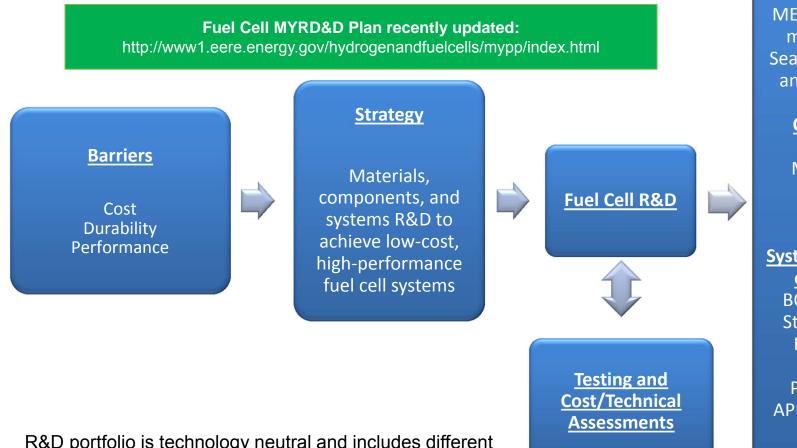

Fuel Cells: Goals and Objectives

ENERGY Energy Efficiency & Renewable Energy

GOAL: Develop and demonstrate fuel cell power system technologies for stationary, portable, and transportation applications

Objectives

- By 2015, a fuel cell system for portable power (<250 W) with an energy density of 900 Wh/L.
- By 2017, a 60% peak-efficient, 5,000 hour durable, direct hydrogen fuel cell power system for transportation at a cost of \$30/kW.
- By 2020, distributed generation and micro-CHP fuel cell systems (5 kW) operating on natural gas or LPG that achieve 45% electrical efficiency and 60,000 hours durability at an equipment cost of \$1500/kW.
- By 2020, medium-scale CHP fuel cell systems (100 kW–3 MW) with 50% electrical efficiency, 90% CHP efficiency, and 80,000 hours durability at an installed cost of \$1,500/kW for operation on natural gas, and \$2,100/kW when configured for operation on biogas.
- By 2020, APU fuel cell systems (1–10 kW) with a specific power of 45 W/kg and a power density of 40W/L at a cost of \$1000/kW.



Fuel Cells: Challenges & Strategy

U.S. DEPARTMENT OF Energy Rene

Energy Efficiency & Renewable Energy

The Fuel Cells sub-program supports research and development of fuel cell and fuel cell systems with a primary focus on reducing cost and improving durability. Efforts are balanced to achieve a comprehensive approach to fuel cells for near-, mid-, and longer-term applications.

R&D portfolio is technology neutral and includes different types of fuel cells

Stack Components Catalysts Electrolytes MEAs, Gas diffusion media, and Cells Seals, Bipolar plates, and Interconnects

FOCUS AREAS

Operation and Performance Mass transport Durability Impurities

Systems and Balance of Plant (BOP) BOP components Stationary power

Fuel processor subsystems Portable power APUs and emerging markets

Membranes for Transportation Applications				
Characteristic	Units	2011 Status	2017 Targets	2020 Targets
Maximum oxygen cross-over	mA / cm²	<1	2	2
Maximum hydrogen cross-over	mA / cm ²	<1.8	2	2
Area specific proton resistance at: Max. temp., 40-80 kPa water vapor	Ohm cm²	0.023 (40kPa) 0.012 (80kPa)	0.02	0.02
80°C, 25-45 kPa water vapor	Ohm cm²	0.017 (25kPa) 0.006 (44kPa)	0.02	0.02
30°C, up to 4 kPa water vapor	Ohm cm²	0.02 (3.8 kPa)	0.03	0.03
-20°C	Ohm cm ²	0.1	0.2	0.2
Operating temperature	O°	<120	≤120	≤120
Minimum electrical resistance	Ohm cm ²	-	1,000	1,000
Cost	\$ / m²	-	20	20
Durability Mechanical	Cycles with <10 sccm crossover	>20,000	20,000	20,000
Chemical	hours	>2,300	>500	>500

Revised targets in recently released MYRDD Plan http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/index.html

Targets: Catalysts and MEAs

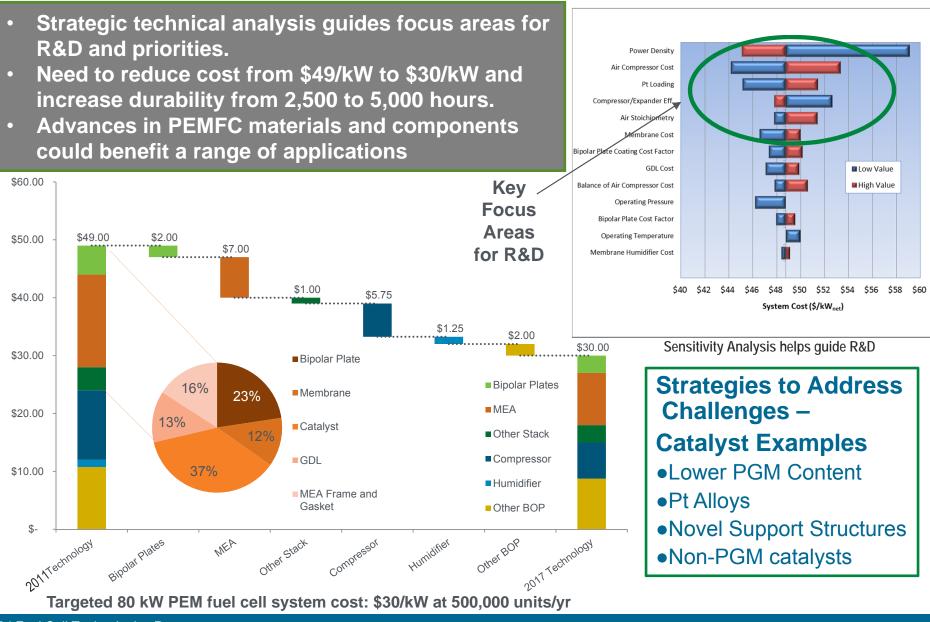
ENERGY Energy E Renewal

Energy Efficiency & Renewable Energy

Electrocatalysts for Transportation Applications					
Characteristic	Units	2011 Status	Targets 2017 2020		
Characteriette	O IIIto	2011 Otatus		2020	
PGM total content (both electrodes)	g / kW (rated)	0.19	0.125	0.125	
PGM total loading (both electrodes)	mg _{PGM} / cm ²	0.15	0.125	0.125	
Loss in initial catalytic activity	% mass activity loss	48	<40	<40	
Electro catalyst support stability	% mass activity loss	<10	<10	<10	
Mass activity	A / mg Pt @ 900 mV _{iR-free}	0.24	0.44	0.44	
Non-Pt catalyst activity per volume of supported catalyst	A / cm ³ @ 800 mV _{IR-free}	60 (measured at 0.8 V) 165 (extrapolated from >0.85 V)	300	300	

Membrane Electrode Assemblies				
Characteristic	Units	2011 Status	2017 Targets	2020 Targets
$Q/\Delta T_i$	kW/°C	-	1.45	1.45
Cost	\$ / kW	13 (without frame and gasket)16 (with frame and gasket)	9	7
Durability with cycling	hours	9,000	5,000	5,000
Performance @ 0.8 V	mA / cm ²	160	300	300
Performance @ rated power	mW / cm ²	845	1,000	1,000

Revised targets in recently released MYRDD Plan http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/index.html

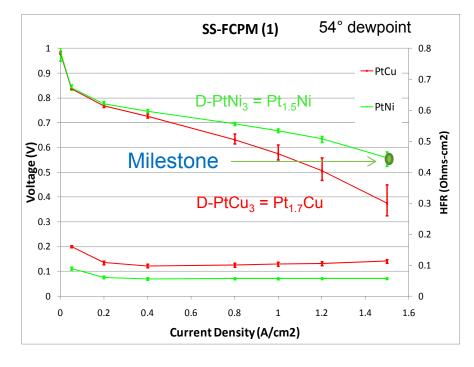

8 | Fuel Cell Technologies Program

eere.energy.gov

Challenges and Strategy: Automotive Applications

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy



De-alloyed Catalysts

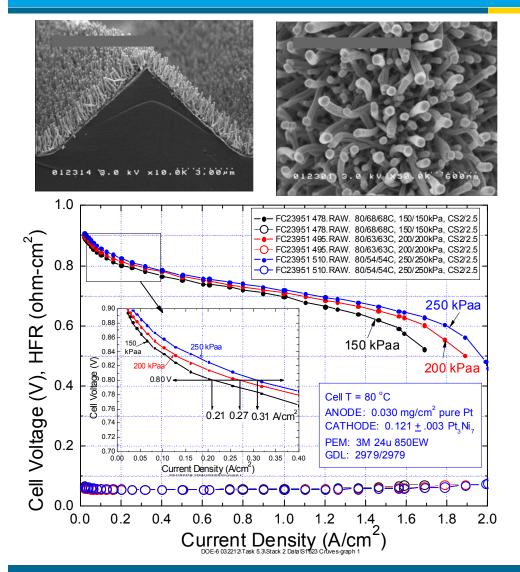
ENERGY Energy Efficiency & Renewable Energy

Low-PGM de-alloyed catalysts meet mass activity and durability targets

GM 50 cm² MEAs, at 0.1 mg_{Pt}/cm² H₂/air, 80° C, 170 kPa_{abs}, stoichs 2/2

- PtCo₃ and PtNi₃ meet 0.44 A/mg_{PGM} mass activity target
- PtCo₃ meets 30,000 cycle durability target
- PtNi₃ meets 0.56 V @ 1.5 A/cm² milestone

GM 50 cm² MEAs, $0.2 \text{ mg}_{Pt}/\text{cm}^2$


0.46 A/mg_{PGM} for PtCo₃, 0.52 A/mg_{PGM} for PtNi₃ in 50 cm² MEA testing

F. Wagner et al., GM

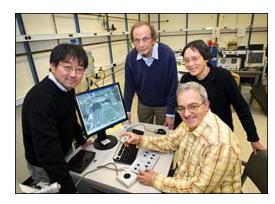
NSTF Catalysts

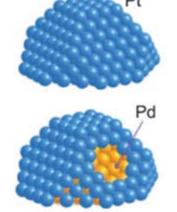
ENERGY Energy Efficiency & Renewable Energy

NSTF catalysts achieve 0.44 A/mg_{PGM} target in MEAs

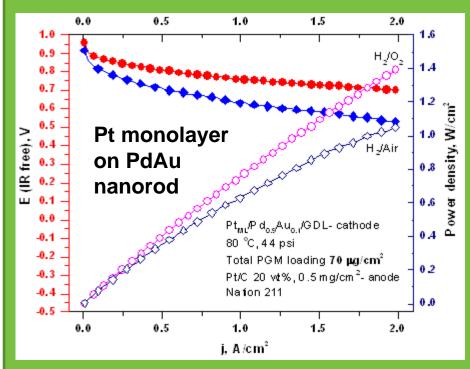
- ~ 5 billion whiskers/cm²
- Whiskers are ~ 25 X 50 X 1000 nm
- Achieved 0.44 A/mg_{PGM} target on roll-to-roll produced MEAs through improvements in Pt₃Ni₇ catalyst processing techniques
- Progress in improving highcurrent performance of Pt₃Ni₇; still opportunity for further improvement

New 3M project will improve MEA components and optimize component integration to simultaneously achieve catalyst, membrane, and MEA targets


M. Debe et al., 3M


Catalyst Scale-up

ENERGY Energy Efficiency & Renewable Energy

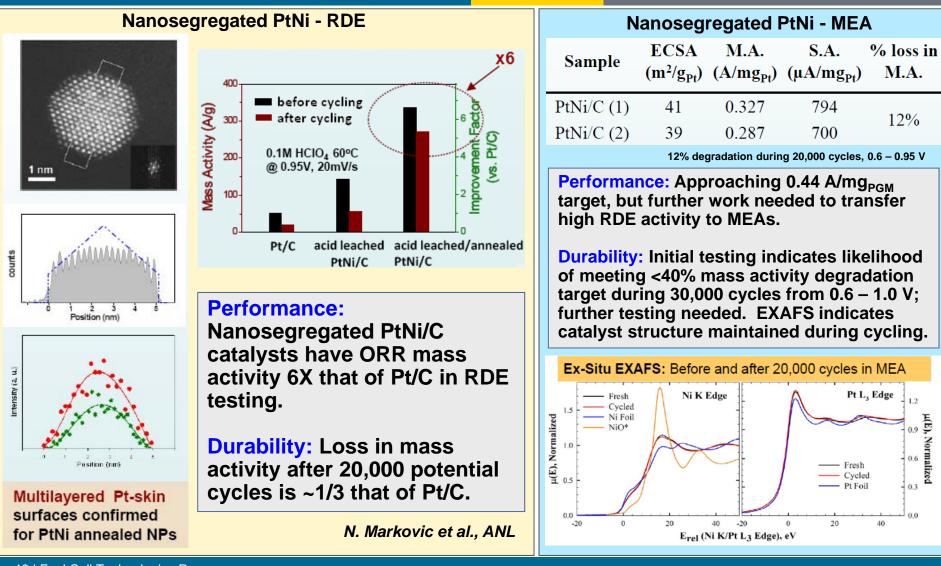

Brookhaven core-shell catalyst technology licensed by leading catalyst manufacturer

- Jan. 3, 2012 N.E. Chemcat Corporation, a leading catalyst and precious metal compound manufacturer, licensed core-shell electrocatalysts developed by BNL under previous EERE project
- Includes catalysts with Pd or Pd-alloy cores, Pt shells
- N.E. Chemcat also licensed innovative methods for making the catalysts and an apparatus design used in manufacturing them

Current BNL project is developing new core-shell structures and improving performance and durability

R. Adzic, et al., BNL

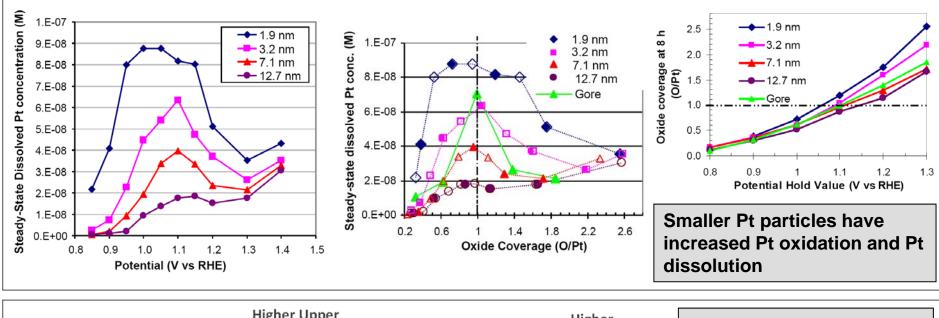
Nanosegregated PtNi Catalysts

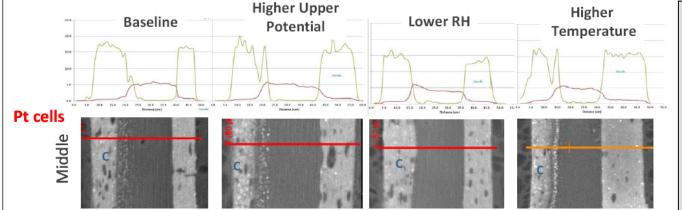

Nano-segregated PtNi catalysts demonstrate performance more than 6X that of platinum in RDE testing

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

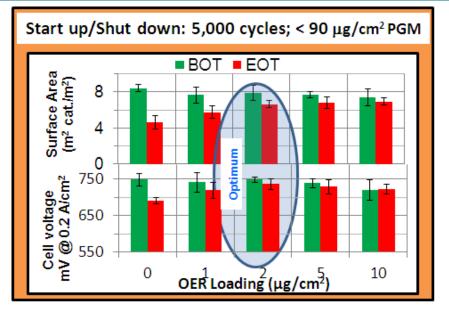

Renewable Energy



Catalyst Degradation

ENERGY Energy Efficiency & Renewable Energy

Quantitative characterization of effects of Pt particle size and cell operating conditions on durability


- Higher potentials and higher temperatures → higher Pt content in membrane (faster degradation)
- Lower RH → lower Pt content in membrane (improved durability)

D. Myers et al., ANL

Durable Catalysts

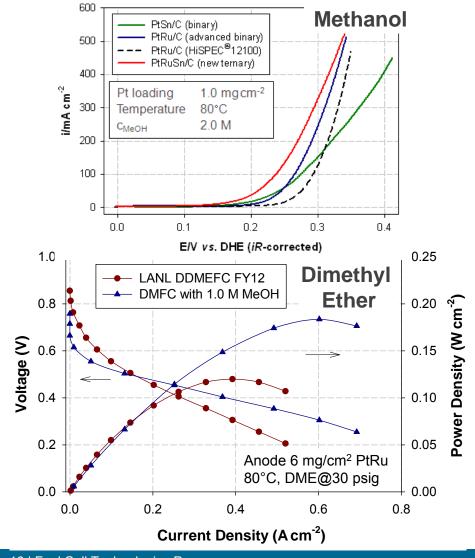
ENERGY Energy Efficiency & Renewable Energy

3M catalysts demonstrate durability under startup, shutdown, and cell reversal

IrRu-modified cathodes have achieved the SU/SD Go/No Go requirement: 5,000 cycles with end voltage < 1.60 V, ECSA loss <10% with < 0.09 mg/cm² PGM Cell Reversal: 200 x 0.2 A/cm² w/ 45 μg/cm² PGM

IrRu-modified anodes have achieved the cell reversal Go/No Go requirement: 200 cycles with end voltage < 1.80 V, with < 0.045 mg/cm² PGM

All Go/No go milestones surpassed at:


- PGM loading < 0.135 mg/cm² total
- Voltages meet the set goals

R. Atanasoski et al., 3M

Catalysts for Liquid Fuels

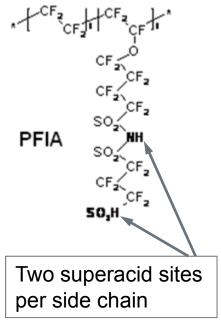
ENERGY Energy Efficiency & Renewable Energy

High-activity catalysts developed for methanol and dimethyl ether

- JMFC's ternary PtRuSn/C DMFC catalyst combines advantages of PtSn at low overpotentials and PtRu at high overpotentials
- PtRuSn/C outperforms the best thrifted PtRu/C catalyst

PtRuSn/C methanol mass activity exceeds **500 mA/mg_{Pt}** at 0.35 V, **150% higher than FY12 milestone**

 DME fuel cell outperforms DMFC at low current due to low DME crossover

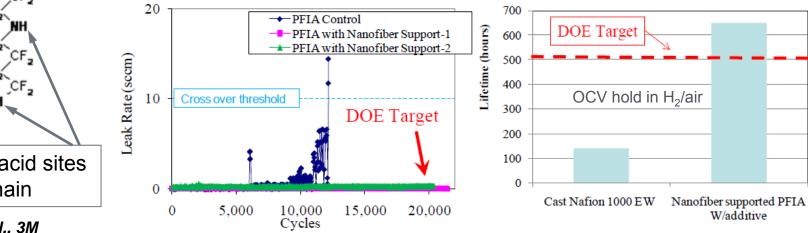

DME fuel cell achieves **150 mA/cm²** at 0.5 V – **60% higher than FY11**, **130% higher than best published data**

P. Zelenay et. al., LANL

Multi-acid Side Chain Membranes

Innovative membranes demonstrate high conductivity at low RH

- 3M PFIA membranes meet most DOE targets for performance and durability
- PFIA maintains high crystallinity at lower equivalent weight than PFSAs
 → better mechanical properties

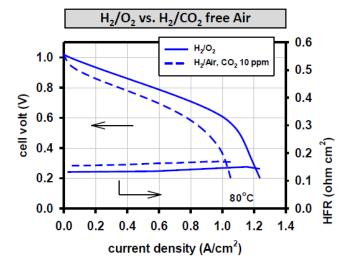

PFIA Status 2017 Target ASR at 120 C (p_{H2O} 40-80 kPa) 0.023 (40 kPa) Ohm cm² ≤0.02 0.012 (80 kPa) ASR at 80 C (p_{H2O} 25-45 kPa) Ohm cm² 0.013 (25 kPa) ≤ 0.02 0.006 (44 kPa) Ohm cm² 0.02 (3.8 kPa) ASR at 30 C (p_{H2O} 4 kPa) ≤ 0.03 ASR at -20 C Ohm cm^2 0.1 ≤ 0.2 O₂ Crossover mA/cm² <1.0 ≤ 2 mA/cm² H₂ crossover <1.8 ≤ 2 Mechanical Durability **RH** Cycles >20.000 ≥20.000 Chemical Durability (OCV) Hours 2.025 ≥ 500

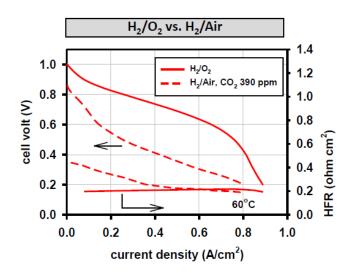
U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

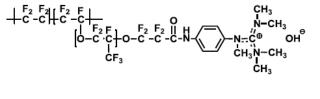



S. Hamrock et al., 3M

Alkaline Membrane Fuel Cells

ENERGY Energy Efficiency & Renewable Energy

High power density (450 mW/cm²) demonstrated on H_2 /air



AEM & hydrocarbon ionomer: ATM-PP 3

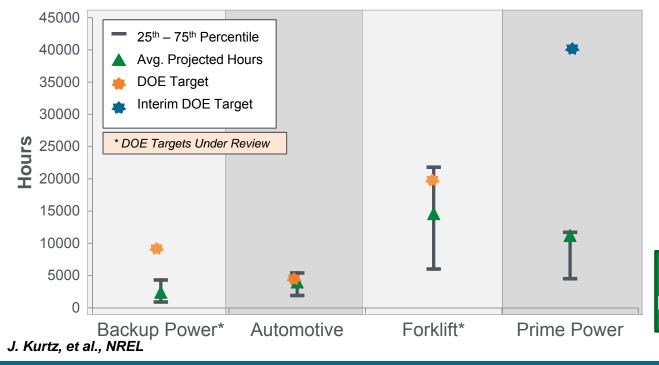
он

PF ionomer: M-Nafion®-FA-TMG

- Hydrocarbon-based membrane and fluorocarbonbased electrode ionomer both have stable polymer backbones, but cation stability in MEAs is an issue
- Fluorocarbon-based electrode ionomer has high O₂ permeability, providing good triple-phase boundary
- 450 mW/cm² achieved on H₂/air (low-CO₂ air)
- CO₂ poisoning issue needs to be addressed

Y. Kim et al., LANL

System/Stack Durability Assessment


U.S. DEPARTMENT OF ENERGY

Energy Efficiency & Renewable Energy

Aggregated results provide a benchmark in time of state-of-the-art fuel cell durability

NREL is analyzing and aggregating durability results by application, providing a benchmark of state-of-the-art fuel cell durability (time to 10% voltage degradation). Results include 82 data sets from 10 fuel cell developers.

Application	Avg Projected Time to 10% Voltage Drop	Avg Operation Hours
Backup power	2,400	1,100
Automotive	4,000	2,700
Forklift	14,600	4,400
Prime	11,200	7,000

PEM & SOFC data from lab tested, full active area short stacks and systems with full stacks. Data generated from constant load, transient load, and accelerated testing.

Please send inquires to Fuelcelldatacenter@ee.doe.gov

Thank you

Dimitrios.Papageorgopoulos@ee.doe.gov

www.hydrogenandfuelcells.energy.gov