

FLORIDA SOLAR ENERGY CENTER Creating Energy Independence

Evaluation of Platinum Band Formation in PEM Fuel Cells

Marianne P. Rodgers,^{*} David A. Cullen,[†] Leonard J. Bonville,^{*} Darlene K. Slattery,^{*} James M. Fenton^{*}

*Florida Solar Energy Center, Cocoa, Florida, USA *Oak Ridge National Laboratory, Oakridge, TN, USA

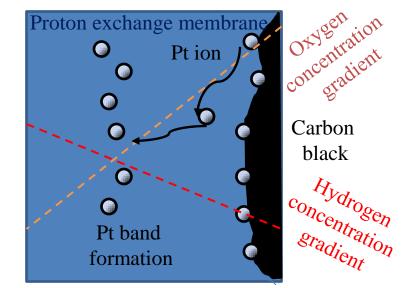
Carisma 2012 – 3rd Carisma International Conference

Durability in PEM Fuel Cells

- Lack of long term stability in PEM fuel cells limits commercialization
- Automotive fuel cell systems need to be as durable & reliable as internal combustion engines
 - 5,000 hours by 2017
 - Operate -40 to +40 °C with < 5% performance loss</p>
 - Operate without external humidification
- Stationary fuel cells
 - > 60,000 hours by 2020

Membrane Chemical Failure Mechanisms

- Membrane is limiting factor in fuel cell longevity
- Membrane chemical decomposition caused by:
 - Reactant gas crossover
 - Radical formation and movement
 - Recrystallized Pt particles
 - Metal ion contaminants
- Radicals form at both electrodes and within the membrane
 - > Requires H_2 , O_2 , and Pt (or certain other metals)
- Generation of radicals within membrane compromises integrity, leading to embrittlement and H₂-crossover



Impact of Pt on Membrane Failure

- Pt dissolves at high cathode potential and precipitates in the membrane through reduction by H₂
- The effect of Pt in the membrane is under debate
 - Decreases degradation^{1,2}
 - Scavenges H₂O₂ and radicals
 - Accelerates degradation^{3,4,5}
 - Radicals form on the Pt surface from crossover H₂ and O₂
 - Radicals attack PEM through chain unzipping and scission mechanisms

Contrasting effects of Pt on degradation due to differences in size and distribution of particles

- 1. Hagihara, H. et al. *Electrochim. Acta* **2006**, *51*, 3979.
- 2. Endoh, E. et al. J. ECS Trans. 2007, 11, 1083.
- 3. Atrazhev, V. V. et al. J. Electroanal. Chem. 2007, 601, 251
- 4. Stucki, S. et al. J. Appl. Electrochem. 1998, 28, 1041
- 5. Zhao, D. et al. J. Power Sources 2010, 195, 4606.

Effect of Size and Distribution of Pt in the Membrane on Degradation

Location

Reactant x-over is stoichiometrically favorable for OH[•] in the same location where the Pt band preferably forms¹

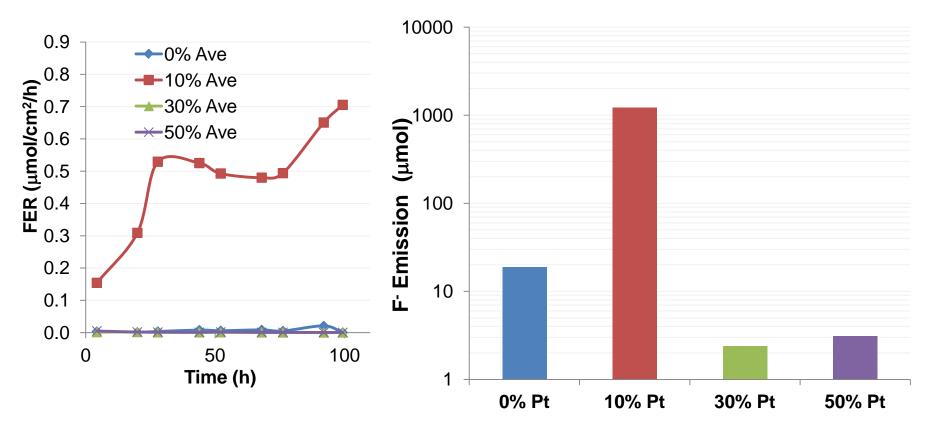
Size

- > Large particles \rightarrow Radicals escape more slowly¹
- Small particles¹
 - ✤ Far apart: fewer radicals
- Density
 - > O_2 is more efficiently reduced to H_2O with increased Pt density²
 - 1. Gummalla, M.; Atrazhev, V. V.; Condit, D.; Cipollini, N.; Madden, T.; Kuzminyh,
 - N. Y.; Weiss, D.; Burlatsky, S. F. *J. Electrochem. Soc.* **2010**, *157*, B1542.
 - 2. Bonakdarpour, A.; Dahn, T. R.; Atanasoski, R. T.; Debe, M. K.; Dahn, J. R. *Electrochem. Solid-State Lett.* **2008**, *11*, B208.

Accelerated Stress Testing in Fuel Cells

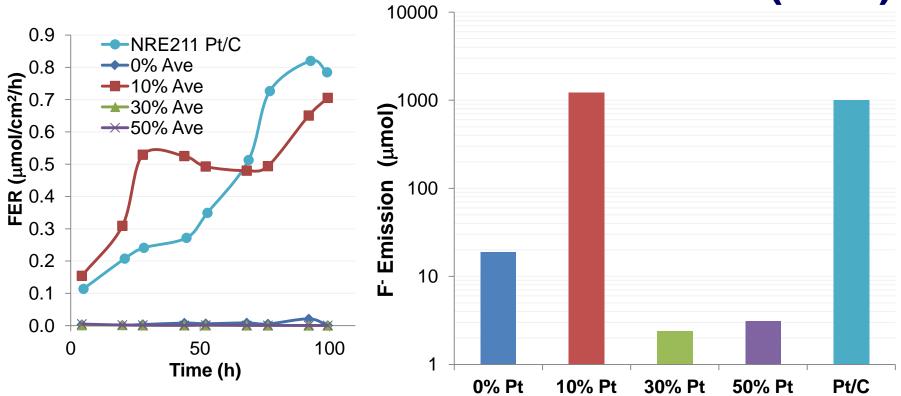
- Evaluation of membrane durability under normal operating conditions is not practical
- Examining MEAs under accelerated testing gives indication of degradation behavior
- Accelerated tests need to:
 - Activate targeted failure mode
 - Minimize confounding effects
- Low humidities, high temperatures, humidity cycling, temperature cycling, open circuit voltage (OCV)
 - OCV operation accelerates membrane chemical decomposition

Strategy

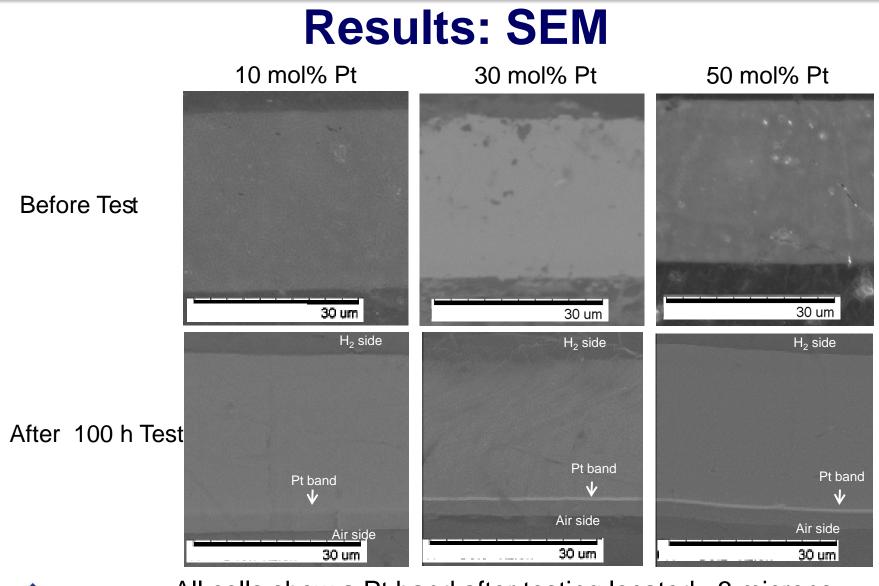

Goal:

- To investigate the effect of Pt in the membrane on durability
 - Hypothesize that concentration of Pt in the membrane will impact the magnitude of degradation
- Impregnated NRE211[®] with 0, 10, 30, and 50 mol%
 Pt
 - No electrodes were applied to the membranes
- Compare the durability of cells with each Pt loading
 - ▶ 100 h, H₂/air, 90 °C, 30% RH
 - Monitor fluoride emission rate during test
 - Compare electron microscopy images before and after testing

Results: Fluoride Emission Rate (FER)

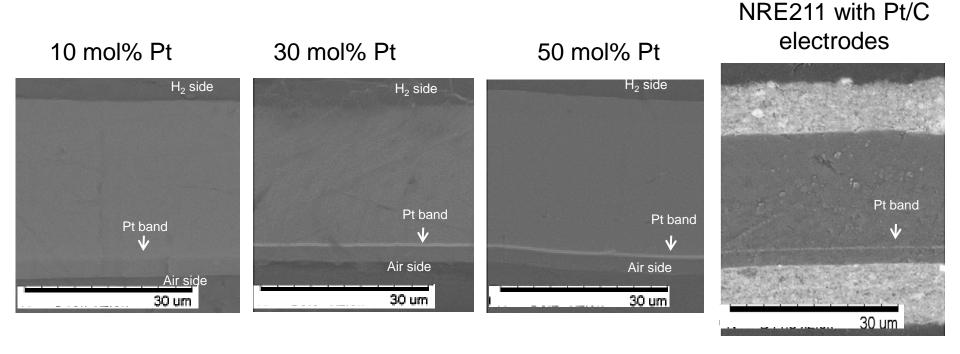


 The total fluoride emission of the 10 mol% Pt cell is >2 orders of magnitude higher than all other cells



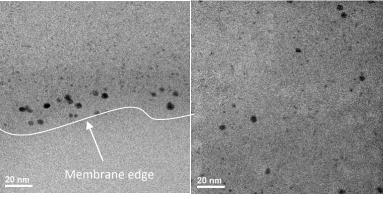
Results: Fluoride Emission Rate (FER)

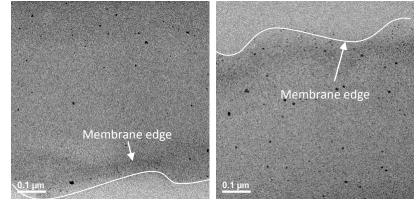
- The total fluoride emission of the 10 mol% Pt cell is >2 orders of magnitude higher than all other cells
- The results with 10% Pt are comparable to a standard cell with a NRE211[®] membrane and a Pt/C electrode
 FSEC



All cells show a Pt band after testing located ~3 microns from air side

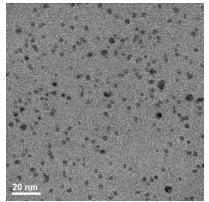
Results: SEM


- All cells show a Pt band after testing located ~3 microns from air side
- Similar to a conventional CCM

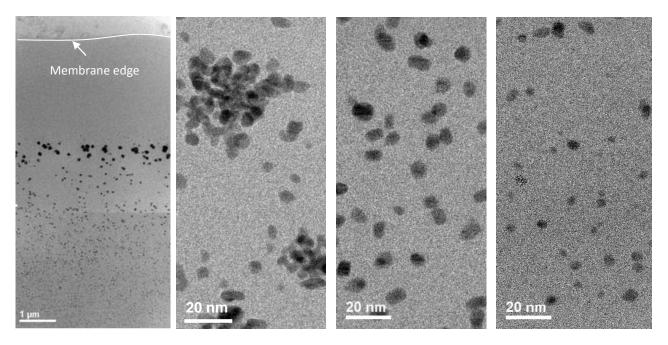


Results: TEM of PEMs: 10 mol% Pt

Before Testing


After Testing

- ✤ Before test:
 - Higher concentration of Pt near edge
 - > Pt particles in the membrane evenly distributed
 - 44 nm average distance between particles
 - 2.9 nm average particle size
 - 0.6% area coverage by particles
- ✤ After 100 h test:

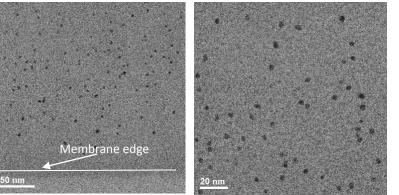

SEC

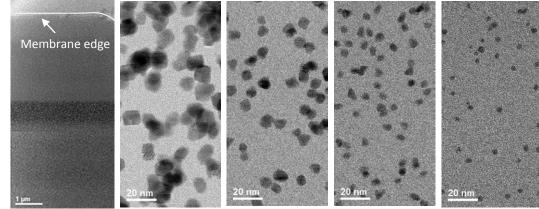
- Edge effect is gone
- > Pt particles evenly distributed
 - 10 nm average distance between particles
 - 2.4 nm average particle size
 - 6.4% area coverage by particles

Results: TEM of PEMs: 30 mol% Pt

✤ After 100 h test:

- Pt band has formed
 - * More than 5 μ m wide located 2.6 μ m from air side
 - ◆ 18 to 20 nm average distance between particles (↑ with distance from air side)
 - ◆ 3.7 to 6.8 nm average particle size (↓ with distance from air side)
 - ◆ 3.3 to 14% area coverage by particles (↓ with distance from air side)

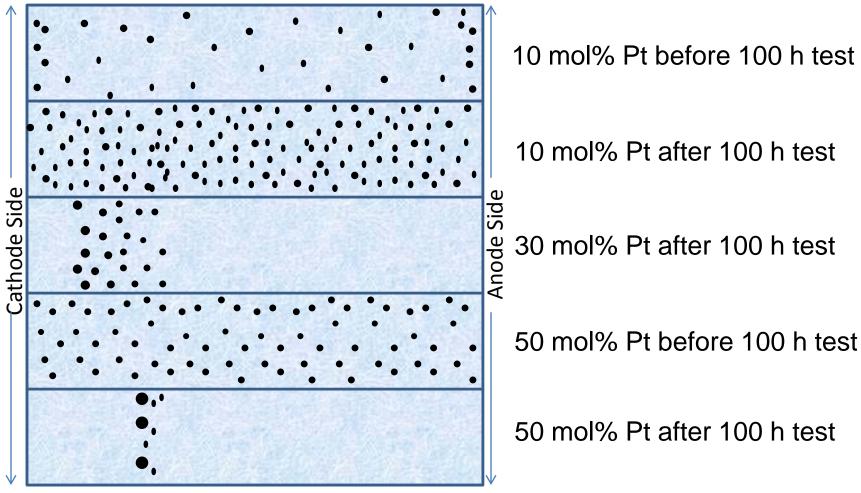




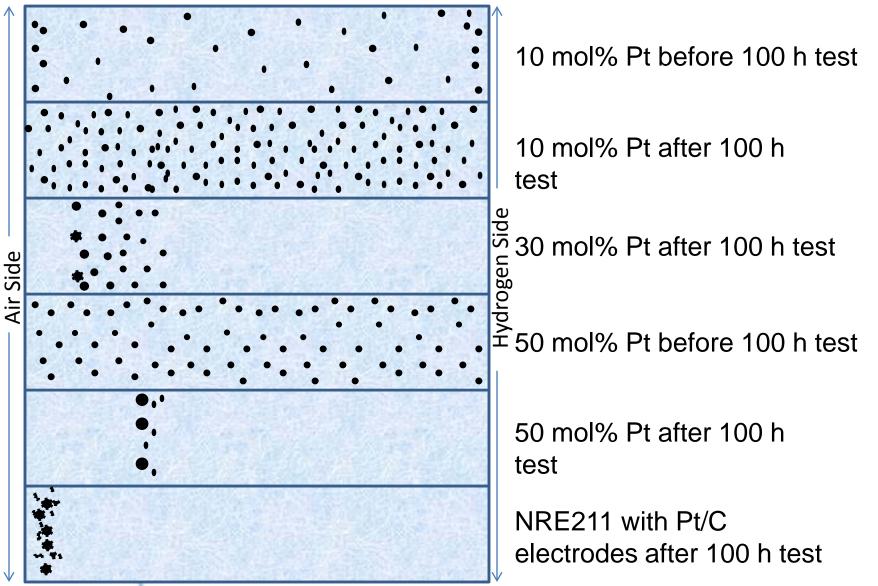
Results: TEM of PEMs: 50 mol% Pt

Before Testing

After Testing



- Before test:
 - Homogenous distribution of Pt
 - 24 nm average distance between particles
 - ✤ 3.4 nm average particle size
 - 2.2% area coverage by particles
- After 100 h test:
 - > Pt band has formed
 - \bullet 0.9 μm wide 3.2 μm from air side
 - ◆ 14 to 18 nm average distance between particles (↑ with distance from air side)
 - ◆ 2.5 to 11 nm average particle size (↓ with distance from air side)
 - 3.3 to 40% area coverage by particles (\downarrow with distance from air side)


TEM Summary

After testing, 10 mol% Pt had smallest particle
 distance and size, and the greatest overall Pt coverage

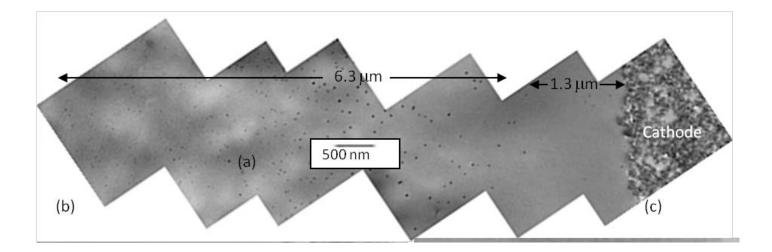
TEM Summary

Summary and Conclusions

- Impregnated NRE211 with 0, 10, 30, and 50 mol% Pt, supplied H₂/air and examined degradation and Pt size and distribution
- Although Pt bands formed with 30 and 50 mol% Pt, degradation was negligible
- Highest degradation observed with 10 mol% Pt
 - Attributed to higher concentration of small particles, which has been shown to result in increased degradation¹

 Gummalla, M.; Atrazhev, V. V.; Condit, D.; Cipollini, N.; Madden, T.; Kuzminyh, N. Y.; Weiss, D.; Burlatsky, S. F. J. Electrochem. Soc. 2010, 157, B1542.

Acknowledgements


- Funding:
 - Florida Hydrogen Initiative DOE Contract # DE-FC36-04GO14225
- Individuals:
 - Peter Kubiak, Nicholas Miller Ion Chromatography
- ✤ TEM:
 - Research sponsored by Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Program, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy

TEM of NRE211 Pt/C after 100 h OCV, 90 °C/30% RH, H₂/air

Carisma 2012 – 3rd Carisma International Conference